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Abstract. On the basis of the theory of Lindblad for open quantum systems we derive 
master equations for a system consisting of two harmonic oscillators. The time dependence 
of expectation values, Wigner function and Weyl operator are obtained and discussed. 
The chosen system can be applied for the description of the charge and mass asymmetry 
degrees of freedom in deep inelastic collisions in nuclear physics. 

1. Introduction 

In recent years many experimental data have been measured in the field of deep 
inelastic heavy ion collisions in nuclear physics. A review has been given by Schroder 
and Huizenga (1984). The characteristic feature of these collisions is the binary 
character of the system, i.e. the final fragments have nearly the same masses as the 
initial nuclei. For the description of deep inelastic collisions one has to treat collective 
degrees of freedom explicitly. These are the relative motion of the nuclei, mass and 
charge exchange, the neck degree of freedom and surface vibrations of the fragments 
(Maruhn et al 1980). Another important feature of these reactions is the dissipation 
of energy and angular momentum out of the collective degrees of freedom into the 
intrinsic or single-particle degrees of freedom. 

Deep inelastic collisions allow a description which is between two extreme theoreti- 
cal approaches, namely in terms of transport theories and quantum mechanical collec- 
tive theories. In the early theories the loss of kinetic energy is assumed as a direct 
process based on the exchange of nucleons between the nuclei, thus stressing indepen- 
dent-particle propagation and the stochastic random walk nature of the relaxation 
phenomenon (Weidenmuller 1980). In the later theories the loss of kinetic energy is 
seen as an indirect process: first collective modes, such as surface vibrations and giant 
resonances, are coherently excited and then damped due to the coupling of these 
modes to the remaining non-collective degrees of freedom (Dasso 1984). Therefore, 
the later theories assume that the relaxation phenomena are predominantly of coherent 
nature. 

One method to introduce dissipation in a quantum mechanical description of deep 
inelastic collisions is to assume that the energy dissipation is similar to the loss of 
energy of a harmonic oscillator coupled with a large number of other harmonic 
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oscillators. This mechanism can be simulated by a friction term of Kostin type in the 
Schrodinger equation (Kostin 1972). For charge and mass equilibration in deep 
inelastic collisions, such Schrodinger equations have been applied (Sindulescu et a1 
1981). But the Kostin-type Schrodinger equations have a non-linear character and are 
disadvantageous in the sense that they can only describe the dissipation from a single 
collective degree of freedom. 

A more appropriate method of introducing dissipation into the quantum mechanical 
description of many coupled large scale collective modes is the axiomatic method of 
Lindblad (1976a, b). In this method, the simplest dynamics for the subsystem of the 
explicitly treated collective degrees of freedom is chosen, namely a semigroup of 
transformations which introduces a preferred direction in time and, therefore, can 
describe a genuinely irreversible process. It has been shown by Talkner (1986) that 
the assumption of a semigroup dynamics is only applicable in the limit of a weak 
coupling of the subsystem with its environment, e.g. for long relaxation times. However, 
in deep inelastic collisions the timescale of the subsystem is of the order of the relaxation 
time. Therefore, we have to consider the method of Lindblad in our applications as 
an axiomatic procedure for introducing dissipation processes in a simple but effective 
manner. 

In a recent paper Sindulescu and Scutaru (1985) have applied the theory of Lindblad 
to the problem of the damping of a single collective coordinate in deep inelastic 
collisions. They have shown that various master equations for the damped quantum 
oscillator, used in the literature for the description of damped collective modes in deep 
inelastic collisions (Hofmann et a1 1979, Hasse 1979, Spina and Weidenmiiller 1984), 
are particular cases of the master equation derived by Lindblad. 

In the present paper we extend the previous work of Gupta et a1 (1984) on the 
dynamics of the charge equilibration process in deep inelastic collisions and treat the 
damping of the proton and neutron asymmetry degrees of freedom with the method 
of Lindblad. The charge and mass distributions in di-nuclear systems can be described 
with continuous coordinates of the charge and neutron asymmetries defined by 

NI - N2 
77N =- N I  + N 2 ’  

z1 - z 2  

ZI + z 2  
772 =- 

Here, Z , ( N , )  and Z 2 ( N 2 )  are the total charge numbers (neutron numbers) on the 
left-hand and right-hand side of a plane through the neck of the di-nuclear system 
(Maruhn et a1 1980). Without damping, the charge and neutron asymmetry degrees 
of freedom are described by a wavefunction @( vz, vN,  t ) ,  which is the solution of the 
following time-dependent Schrodinger equation: 

(2) H ( T ~ ,  ~ N ) @ ( v z ,  T N ,  r ) = i h  a @ ( ~ z ,  T N ,  d l a t  
where the Hamiltonian of the model is given as (lkzNI s (kZkN)’”): 

The Hamiltonian has the simple structure of two coupled oscillators in the coordinates 
T~ and vN in order to keep the time development of the wavefunction analytically 
solvable. The string constants of the potential can be calculated with the liquid drop 
model for the sticking configuration of the nuclei, i.e. for the relative distance R = 
R I  + R 2 ,  where R I  and R2 are the radii of the two colliding nuclei (for more details 
see Gupta et a1 (1984)). 
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Hofmann et a1 (1979) have considered the coupling of the mass asymmetry coordin- 
ate to the charge asymmetry coordinate on the basis of a density operator formalism 
using a quantum master equation in a perturbative treatment. The coupling of the 
neutron and charge asymmetry coordinates has also been studied in the framework of 
a two-dimensional Fokker-Planck equation by Gross and Hartmann (1981), Schroder 
et a1 (1981), Birkelund et a1 (1982) and Merchant and Norenberg (1982). 

With the Hamiltonian (3) as an example, we study the damping of two coupled 
oscillators in the framework of the Lindblad theory. In order to have a formalism 
which is generally applicable, we give the following formulae in terms of the two 
general coordinates q1 and q2 instead of vz and v N .  In 8 2 we present the equation 
of motion of the open quantum system of two oscillators in the Heisenberg picture. 
With this equation we derive the time dependence of the expectation values of the 
coordinates and momenta and their variances, as shown in § 3. The connection with 
the Wigner function and Weyl operator are discussed in § 4. Finally, in § 5, we 
demonstrate the time dependence of the various quantities for a simplified version of 
the model, where the decay constants can be calculated analytically. 

2. The equation of motion in the Heisenberg picture 

If 4, is the dynamical semigroup describing the time evolution of the open quantum 
system in the Heisenberg picture, then the master equation is given for an operator A 
as follows (Lindblad 1976a, b): 

1 
-- d4r(A)-L(&f(A))=$H,  & ( A ) ] + g z ( V ; [ & , ( A ) ,  V,]+[V:, &(A)]Vj). 

dt  J 
(4) 

The operators H, V,, VT ( J  = 1,2,3,4)  are taken to be functions of the basic observables 
of the two quantum oscillators. The coordinates are ql and q2, and the momenta p1 
and p2 obey the usual commutation relations 

[ q *  7 PI1 = i h l  

[q1,421=0 [PI I Pzl = 0 [41, P21= 0 [q29 PI1 = 0. 

[92,P21=ihl 

In order to obtain an analytically solvable model, H is taken to be a polynomial of 
second degree in these basic observables and V,, V: are taken to be polynomials of 
first degree. Then in the linear space spanned by q l ,  q2, p I ,  p 2 ,  there exist only four 
linearly independent operators VJ= , ,2,3,4: 

2 2 

V, = a J K P K  + b J K q K  

K = l  r = l  

where ajK,  bjK E C with j = 1,2,3,4,  and K = 1, 2. Then it yields 
Z 2 

v:= c a,*,pp,+ c b,*,q, 
* = 1  K = l  

where a,*,, b,*, are the complex conjugates of aJK,  b,K. 
The Hamiltonian H is chosen in the form of two coupled oscillators 
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Now, as a consequence of the definitions (10) of the phenomenological constants 
which appear in L ( A )  and of the positivity of the matrix formed by the four vectors 
al, a2,  bl ,  b2, it follows that the principal minors of this matrix are positive or zero. 
This matrix is given by 

aTa, aTa2 aTbl aTb2 
aTa, aTa2 alb,  aTb2 
bTal bra2 btb,  b:b, 
bza, bfa,  bzb, bTb2 

Dqlq2-(ifi/2)Q12 - D q l p l  -(ih/2)All -DqlP2-(ih/2)A12 
0 4 2 4 2  - D q 2 p 1  - (ih/2)A2l - D q * p 2 -  (ih/2)A22 

- D p l q l + ( i ~ / 2 ) ~ l l  -Dplq2+(ih/2)A21 D P l P l  DPlP2 - (ih/2)P12 
-Dp241 + (ih/2)A12 -Dp242+ (ih/2)A22 D,,,, - (ih/2)P2, D P 2 P 2  

(11) 

For example, we derive the following condition from the positivity of (1 1): 
1 2 2  

~ q 1 q 1 ~ q 2 q 2 -  ( ~ q , q 2 ) 2 ~ 4 f i  a 1 2 *  

This inequality and the corresponding ones derived from (1 1) are constraints imposed 
on the phenomenological constants by the fact that 6, is a dynamical semigroup 
(Lindblad 1976a, b). 

3. The time dependence of expectation values 

The time-dependent expectation values of self-adjoint operators A and B can be written 
with the density operator p, describing the initial state of the quantum system, as follows: 

(12) 
m*(t) =Tr(p&(A))  

uAB ( t ) = f Tr( p i ,  ( A B  + BA)) .  

In the following we denote the vector with the four components mq,( t ) ,  mq2( t ) ,  mpl( t )  
and mpz( t )  by m( t )  and the following 4 x 4 matrix by &( t ) :  

ff '?lql  uq lq2  uqlPI u4LP2 

UP141 UP142 (+PIPI U P I P 2  

UP241 (7P242 UP2PI UP2P2 

Then via direct calculation of i(q,) and i ( p , )  we obtain 

dm/dt  = pm (14) 
where 
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where m ( 0 )  is given by the initial conditions. The matrix A( t )  has to fulfil the condition 

In order that this limit exists, P must have only eigenvalues with negative real parts. 
By direct calculation of L"( qKq,, ), i( p K p P  and L"( q K p p  + P,, qK 1, K ,  P = 1,2, we obtain 

d & / d t =  ?&+&?T+215 (18) 

where b is the matrix of the diffusion coefficients 

and 9' the transpoied matrix of ?. The time-dependent solution of (18) can be written 
as 

where A( t )  is defined in (16). The matrix e is time independent and solves the static 
problem (18) (d&/dt  =O): 

& ( t )  = A(t)(&(o) - i )A'( t )+i  (20) 

Pi + e PT + 2 b  = 0. (21) 

Now we assume that the following limit exists for t+m: 

&(CO) = lim &( t ) .  

In that case it follows from (20) with (17): 

1 - 0 2  

&(CO)  = e. 
Inserting (23) into (20) we obtain the basic equations for our purposes: 

G( t )  = A( t)(s(o) - 6 ( m ) ) A T ( t )  + &(CO) (24) 
where 

?&(CO) + &(a) PT = - 2 L i  

4. The Wigner function and Weyl operator 

Finally we want to discuss the time dependence of the Wigner function. This function 
is defined as 

where the Weyl operator W is defined by (&, t2,  v l ,  v2 real) 

w(tl I t2;  v l ,  7 1 ~ )  = exp[ifi-'(rllql + 172q2 - t lp l  - t2p2)I. 

&(w(t1,  t2;  v l ,  1 7 2 ) )  = ~ 5 ~ ( t ) ,  5 2 ( f ) ;  vI ( t ) ,  v 2 ( t ) )  exp(g(t)) .  

(27) 
Using the method developed by Lindblad (1976a, b) for the one-dimensional case we 
find for the time development of the Weyl operator the relation 

(28) 
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The real functions g ( f )  = ( ( , ( t ) ,  f 2 ( ? ) ,  q l ( f ) ,  r 1 2 ( t ) )  and g ( t )  satisfy the equations of 
motion: 

(29) 
(30) 

dg( f ) /dt  = j?'j- ' t(  t )  

dg( t ) /d t  = - h - 2 & (  t ) j f i j - '&(  t )  

where 

Equations (29) and (30) are obtained by inserting the Weyl operator W ( t l ,  t2; v i ,  772) 
into the equation of motion (4) with defined in (7), (8) and (9). The initial conditions 
for the coordinates f l ( t ) ,  t2(t), q , ( t )  and q 2 ( f )  are determined by k2(0)  = t l ,  & ( O )  = &, 
~ ~ ( 0 )  = 7, and ~ ~ ( 0 )  = q 2 ,  respectively, and g ( t )  by g(0) = 0. From (29) and (30) we 
find that f ( f )  is a linear function in the coordinates t1, t2, v 1  and q2 and g ( t )  a 
quadratic function. 

The Weyl operator can be used to calculate the time-dependent expectation values 
m( t )  and &( t )  (see (16) and (20)), since this operator is connected with the coordinates 
and momenta via the derivatives 

el - 1 ' 
--;Pi a t i  g=o 

Equations of this type can be evaluated with the help of (28)-(30) and lead to the 
same results for m ( t )  and & ( t )  as given in P 3. With the Weyl operator (28) we can 
calculate the time development of the Wigner function. For this purpose we use the 
Fourier transform of the Wigner function at t = 0: 

Trip exP[ih-'(77;91+77;92-51P1-55PZ)l) 
+a, 

xf(xi 9 ~2 9 Y I  9 ~2 9 1 = 0) dxi dx2 dyi dy2. (34) 
When this relation is inserted into (26) after the Weyl operator $,( W )  is expressed by 
(28), one can integrate over the coordinates t1, t2 ,  q, and v2 with the following result 
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for the Wigner function: 

f(x1 f x2 9 Yl  9 Y2 1 t )  
+'x 

- X  

xf(x!, xi, yj, y ; ,  t = 0) dxi dx i  dyj dyi (35) 
where x = (x l ,  x2, y , ,  y 2 )  and the matrix 2( t )  is given by 

i( t )  = A( tf)bfiT( t ' )  dr'. ib 
This definition can be applied in order to rewrite (24): 

& ( r )  = A ( t ) 6 ( o ) A T ( t ) + 2 i ( t ) .  (37) 
In the particular case when we set 

1 
[ det( 2 ~ 6 (  0)>]1'2 

exp[-f(x - m(O))&(O)-'(x - m(O)) ]  f(x1, x2, Y l  3 Y 2 ,  t = 0) = 

we obtain from (35) 

which is the well known result for Wigner functions (Wang and Uhlenbeck 1945, 
Agarwal 1971, Dodonov and Manko 1985). 

5. Example for damped oscillators 

In order to illustrate the formalism developed in the preceding sections, we present 
an example of two oscillators, which are coupled by a potential of the form as used 
for the proton and neutron degrees of freedom in (3), i.e. K , ~  = 0, po = 0, u l z  # 0. In 
this case the matrix p, governing the time development of the expectation values m( t )  
and & ( t ) ,  becomes 

For the calculation of the matrix A(t) we y u s t  diagonalise the matrix ? by solving 
t,he corresponding secular equation, i.e. det( Y - zl) = 0, where z is the eigenvalue and 
Z is the unit matrix. According to (40) one obtains an equation of fourth order for 
the eigenvalues z, which can be simply solved only for special examples. In the 
particular case with a12 = 0, p12 = 0, A I 2  = 0 and A z l  = 0, the secular equation is obtained 
as 

[(z + A l l ) ' +  w:l[(z + Az2)'+ wil = ( ~ ~ ~ ) ~ / m ~ m ~ .  (41 1 
The roots of this equation have the general structure 

z1 = -y++iw+ z2 = - y+ - iw+ z,=-y-+iw- z4 = - y- - iw- .  (42) 
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This can be easily seen for the case v12 = 0: 

Y+ = A l l  Y- = A22 0, = 01 w -  = w2 (43) 

y+ = y- = A w i  = w 2 *  v12 / (mlm2)1 i2 .  (44) 

or for A l l = A 2 2 = h ,  w 1 = w 2 = w ( ( u 2 >  ~ , ~ / ( m ~ m ~ ) ” ~ )  

Only positive values of y+ and y- fulfil (17). Applying the eigenvalues z, of P we 
can write the time-dependent matrix A( t )  as follows: 

M m n ( t )  =C Nmz exp(zit)Ni’ (45) 
I 

where the matrix 3 represents the eigenvectors of P: 
C Y m n N n t  = ZiNmz. 
n 

The eigenvalues (42) lead to the following matrix elements M,, : 

The coefficients A:,, and phase shifts $:,, are obtained from the eigenvectors of ?. 
With the relations M,,,,,( t = 0) = S,, and dM,,( t)/dtl,=,= Y,, we have two equations 
which the quantities A:,, and +:,, have to fulfil: 

Ai,, COS 4:,, +A;,, COS qh;, = S,,  

A;,(y+ cos 4+mn+w+ sin 4 ~ , , ) + A ~ , ( y - c o s  d,,+w-sin 4A,,,)= -Y,,. 
(48a) 

(48b) 
These two equations can be used to eliminate the coefficients A:,. Using (16), (24) 
and (47) we conclude that the expectation values of the coordinates and momenta 
decay with the exponential factors exp( - y+ t )  and exp( - y- t ), and the matrix elements 
v,, with the combined factors exp(-2ytt), exp(-2y-t) and exp[-( y+ + r-)t]. 

Since the matrix elements M,, are in general lengthy expressions, we present here 
the matrix A( t )  only for the special and simple case that the oscillators are uncoupled. 
With the roots given in (43) we obtain 

0 

expI-A,,t) COS w,1 0 

i l / m , w , i  expl-A,,r) sin w,I  

0 O I  i :  (49) 

expi -A, , l )  cos w , l  

( l / m 2 w , )  exp(-A,,r) sin w21 

- m l w ,  e x p i - A , l l ) s i n w , l  0 expi -A, , l )  COS U, I 0 

-m,w,exp(-A,,i)sin W , I  expi-A,,I)cos w 2 i  

M i l , =  

This matrix can be used to evaluate G ( t )  defined by (24) or (37). For example, we 
find the following expression for u12= uqiq2 with A(r) of (49): 

cqiq2(f) = exp[-(All + A22)fI (uqlq2(0) - m q i q 2 ( a ) )  cos w 1  t cos w2t  

1 
mlwl 

+ - ( U ~ ~ ~ ~ ( O )  -uq2p , (a ) )  sin w l t  cos w2t  

1 
m2w2 

+-(uqlP2(O) - ~ ~ , ~ , ( a ) )  cos w 1 t  sin w 2 t  
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Similar expressions are foutd for !he other matrix elements of G ( t ) .  The matrix 
elements of &(m) depend on Y and D and must be evaluated with (25) or by the relation 

Similar expressions are obtained for the other matrix elements of &(a). The diffusion 
coefficients Dq,q2, Dqip2, D42p,  and DPIp2 are in general zero for uncoupled oscillators 
interacting with a usual environment. This has the consequence that the expectation 
values aqIq2, aqIp2, uq2p1 and uPIp2 vanish for t -$ W. It is a very interesting point that 
the general theory of Lindblad allows couplings via the environment between uncoupled 
oscillators with K~~ = 0, p i j  = 0, vI2  = 0. According to the definitions of the parameters 
in terms of the vectors a, and b,, the diffusion coefficients above can be different from 
zero and simulate an interaction between the ‘uncoupled’ oscillators. In this case a 
structure of the environment is reflected in the motion of the oscillators. 

6. Conclusions 

In this paper we have shown the Hamiltonian of the proton and neutron asymmetry 
degrees of freedom in deep inelastic collisions as an example for two coupled and 
damped oscillators. For this application the Lindblad theory provides a treatment of 
damping which is a possible extension of quantum mechanics to open systems. Accord- 
ing to this theory we could calculate the damping of the expectation values of 
coordinates and momenta and the variances as functions of time. The resulting time 
dependence of the expectation values yields an exponential damping. 

The usual limitation of the Lindblad theory is that the damping time is long 
compared with the characteristic times of the oscillators. This condition is not too 
well satisfied in deep inelastic collisions as we already pointed out in the introduction. 
Therefore, we consider the Lindblad theory in an axiomatic manner and accept its 
parameters as free quantities, fitted to the experimental data of the charge and mass 
distributions after deep inelastic collisions. The problem arising then is the interpreta- 
tion of these parameters with the properties of the intrinsic degrees of freedom. For 
example, the parameters could be related to those obtained from fitting experimental 
data with the Fokker-Planck equation. Work in this direction is in progress. 
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